Triethylborane Induced Stereoselective Radical Addition of R₃SiH to Acetylenes and Stereoselective Reduction of Alkenyl Iodides with Tris(trimethylsilyl)silane

Katsukiyo Miura, Koichiro Oshima,* and Kiitiro Utimoto*
Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-01
(Received March 15, 1993)

Triethylborane induced radical addition of various organosilanes (R_3SiH) to acetylenes has been studied. Among them, tris(trimethylsilyl)silane (TTMSS) proved to be the best reagent for the hydrosilylation of acetylenic compounds in terms of yield and stereoselectivity. For instance, reaction of 1-dodecyne with TTMSS at room temperature for 3 h under Et_3B catalyst provided (Z)-1-tris(trimethylsilyl)silyl-1-dodecene selectively in 98% yield. The stereochemical course of reduction of alkenyl iodides with TTMSS- Et_3B or n-Bu₃SnH- Et_3B has been examined. Treatment of 1-dimethylphenylsilyl-2-iodo-1-dodecene with TTMSS- Et_3B at room temperature afforded (Z)-1-dimethylphenylsilyl-1-dodecene selectively (Z/E > 30/1). On the other hand, treatment with n-Bu₃SnH- Et_3B gave (E)-1-dimethylphenylsilyl-1-dodecene exclusively.

(1) Triethylborane Induced Stereoselective Radical Addition of R₃SiH to Carbon-Carbon Triple Bonds. Transition metal catalyzed hydrosilylation of acetylenes has been extensively studied and widely used for the preparation of alkenylsilanes.¹⁾ In contrast, the synthetic use of hydrosilylation reaction catalyzed by various radical initiators such as peroxides and AIBN has serious limitations. Low stereoselectivity of the reaction is one of difficult problems. In addition, the choice of hydrosilanes is limited to silanes such as Cl₃SiH, MeCl₂SiH, and Ph₃SiH because trialkylsilanes (Me₃SiH and Et₃SiH) can not donate hydrogen to alkenyl radicals efficiently.²⁾

We have reported that Et₃B facilitates the addition of Ph₃SnH³⁾ or Ph₃GeH⁴⁾ to acetylenes in the presence of oxygen. Hydrostannylation of 1-dodecyne with Ph₃SnH-Et₃B provided a 7/3—8/2 mixture of (E)- and (Z)-1-triphenylstannyl-1-dodecene irrespective of the reaction conditions.3) In contrast, Et₃B induced hydrogermylation of 1-dodecyne with Ph₃GeH gave (E)- or (Z)-1-triphenylgermyl-1-dodecene with excellent control of stereochemistry under equilibrating conditions or non-equilibrating conditions.⁴⁾ Whereas the reaction at -78 °C afforded (Z)-1-triphenylgermyl-1-dodecene exclusively, the addition at 60 °C provided (E)-1-triphenylgermyl-1-dodecene as a single product. Here we wish to report that Et₃B mediated hydrosilylation of carbon-carbon triple bonds with a variety of organosilanes (R₃SiH) and that treatment of terminal acetylenes with tris(trimethylsilyl)silane (TTMSS)⁵⁾ in the presence of a catalytic amount of Et₃B gave (Z)-1-tris(trimethylsilyl)silyl-1-alkenes with high stereoselectivity.

Triethylborane induced hydrosilylation of acetylenes with Ph₃SiH proceeded very sluggishly as compared to hydrogermylation with Ph₃GeH and hydrostannylation with Ph₃SnH. Stirring a hexane solution of 1-dodecyne (1.0 mmol) and Ph₃SiH (2.0 mmol) in the presence of Et₃B (2.0 mmol) at room temperature for 88 h gave a mixture of (Z)- and (E)-1-triphenylsilyl-1-dodecene only in 42% yield (Z/E=12/1). Then, hydrosilylation of 1-dodecyne was examined using various si-

lanes such as Ph₂SiH₂, Me₃SiSiPh₂H, (Me₃Si)₂SiPhH, and (Me₃Si)₃SiH (TTMSS). Reaction of each silane with 1-dodecyne at room temperature in the presence of Et₃B provided the corresponding hydrosilylation products in poor to excellent yields. The results are shown in Table 1. The reaction with Ph_2SiH_2 was as slow as the hydrosilylation with Ph₃SiH and gave alkenylsilane in low yield in spite of the use of excess amount of silane and Et₃B even after prolonged reaction time (70—75 h). Substitution of phenyl group of Ph₃SiH by trimethylsilyl group facilitated the freeradical hydrosilylation. Treatment of 1-dodecyne with Me₃SiSiPh₂H or (Me₃Si)₂SiPhH provided 1-[diphenyl(trimethylsilyl)silyl]-1-dodecene or 1-[bis(trimethylsilyl)phenylsilyl]-1-dodecene in good yield with high stereoselectivity (Z/E=15/1 or 16/1). TTMSS proved to be the best reagent and afforded (Z)-1-[tris(trimethylsilyl)silyl]-1-dodecene (1) in 98% yield ((Z)-isomer 1/(E)-isomer 2=17/1).⁶⁾ The reaction at room temperature completed within 3 h in the presence of a catalytic amount of Et_3B .

The stereoisomeric ratio of 1 to 2 depended on the reaction conditions. Whereas heating a benzene solution of 1-dodecyne (1.0 mmol) and TTMSS (1.1 mmol) at reflux for 30 min in the presence of AIBN (0.1 mmol) gave a mixture of (Z)-isomer 1 and (E)-isomer 2 (1/2=4/1) in 98% combined yield, Et₃B initiated reaction in toluene at 0 °C provided 1 almost exclusively (96% yield, 1/2>20/1).

Next, Et_3B induced hydrosilylation of various alkynes with TTMSS at room temperature has been examined. Monosubstituted acetylenes provided the corresponding tris(trimethylsilyl)silyl substituted alkenes in good to excellent yields with high stereoselectivity (Table 2). In the case of phenylacetylene or ethyl propiolate, (Z)-isomeric product was obtained exclusively. But the reaction of t-butylacetylene gave only (E)-alkenylsilane as reported by B. Kopping et al.⁶⁾ Internal acetylene such as 6-dodecyne did not undergo hydrosilylation with TTMSS, and starting material was recovered unchanged under the same reaction conditions.

Table 1. Hydrosilylation of 1-Dodecyne with Various Silanes

$R^{1}R^{2}_{2}SIH + = R \xrightarrow{Et_{3}B} R^{1}R^{2}_{2}SI \xrightarrow{R} R^{1}R^{2}_{2}SI$							
Entry	R ¹ R ² ₂ SiH (mi	nol)	Et ₃ B/mmol	Time/h	Yield/%	$Z/E^{\mathrm{a})}$	
1	Ph ₃ SiH	(2.0)	2.0	88	42	12/1	
2	Ph_2SiH_2	(2.0)	2.0	75	20	2.4/1	
3	$Me_3SiSiPh_2H$	(1.1)	1.0	44	78	16/1	
4	$(Me_3Si)_2SiPhH$	(1.1)	0.1	12	74	15/1	
5	$(Me_3Si)_3SiH$	(1.1)	0.1	3	98	17/1	

a) The stereoisomeric ratios were determined by the examination of $^1\mathrm{H}\:\mathrm{NMR}$ of isolated products.

Table 2. Hydrosilylation of Alkynes with TTMSS^{a)}

(PhH, r.t.				
Entry	R	Time/h	Yield/%	$Z/E^{\mathrm{b})}$	
1	$n ext{-}{ m C}_{10}{ m H}_{21}$	3	98	17/1	
2	Ph	3	91	> 50/1	
3	COOEt	3	90	> 50/1	
4	$\mathrm{CH_{2}OH}$	5	50	17/1	
5	CH_2OTHP	5	72	> 20/1	
6	$\mathrm{CH_{2}CH_{2}OH}$	5	81	> 20/1	
7	$t ext{-Bu}$	2	88	<1/100	

a) $(Me_3Si)_3SiH$ (1.1 mmol), acetylene (1.0 mmol), and Et_3B (0.1 mmol) were employed. b) The stereoisomeric ratios were determined by the examination of 1H NMR of isolated products.

The isomerization of (Z)-1-tris(trimethylsilyl)silyl-1alkenes into (E)-isomers by addition-elimination sequences of tris(trimethylsilyl)silyl radical did not proceed. Heating a mixture of 1, TTMSS, and Et₃B at 60 °C for 15 h gave only a small amount of (E)-isomer 2 (<5%) along with recovered 1. This shows sharp contrast to a facile isomerization of (Z)-1-triphenylgermyl-1-dodecene or (Z)-1-triphenylstannyl-1-dodecene which was partially or completely isomerized to the corresponding (E)-isomers⁷⁾ at room temperature upon treatment with Ph₃GeH-Et₃B or Ph₃SnH-Et₃B. (Z)-Alkenylsilane 1 was completely isomerized to (E)-isomer 2 at 60 °C by the use of Ph₃GeH–Et₃B⁴⁾ which is shown in Table 3 along with other examples. Thus, the procedure provides us with a synthetic method for the preparation of both (Z)- and (E)-alkenylsilanes.

We assume following reaction mechanism for the hydrosilylation of terminal acetylenes with $R^1R^2_2SiH$ (Scheme 1). Ethyl radical, generated by the attack of oxygen on triethylborane, abstracts hydrogen from silane to give silyl radical ($R^1R^2_2Si$, 3). The silyl radical adds to terminal acetylenic carbon to provide alkenyl radical 4 which abstracts hydrogen from silane to produce alkenylsilane as a mixture of (Z)- and (E)-isomer under regeneration of silyl radical 3. The selective formation of (Z)-alkenylsilane is due to steric hindrance of

Table 3. Isomerization of Alkenylsilane by Ph₃GeH–Et₃B

	R ¹ R ² ₂ SI R	Ph ₃ GeH-Et ₃ B	R ¹ R ²	² ₂Si	_	
	_	PhH, 60 °C			R	
Entr	Alkenylsilane (Z/E)	Ph ₃ GeH /equiv			Yield /%	$Z/E^{\mathrm{a})}$
1	$\begin{array}{c c} \mathbf{Ph_2(Me_3Si)Si} & \mathbf{n\text{-}C_{10}H_{21}} \\ \hline & (\overline{16}/1) \end{array}$	0.2	0.2	16	97	<1/20
2	$Ph(Me_3SI)_2SI - n-C_{10}H_{21}$ (12/1)	0.5	0.5	16	91	1/16
3	$(\text{Me}_3\text{SI})_3\text{SI} = n \cdot C_{10}\text{H}_{21}$ $(>20/1)$	0.5	0.5	15	90	<1/30
4	(Me ₃ SI) ₃ Sì CH ₂ CH ₂ C	O.5	0.5	15	76	<1/20
5	(Me ₃ SI) ₃ SI Ph (>50/1)	0.2	0.2	16	94	<1/50

a) The stereoisomeric ratios were determined by the examination of $^1\mathrm{H}\,\mathrm{NMR}.$

silyl group which prevents the syn attack of silane in the π -radical (**5**) or in the pair of σ -radicals (**6** or **7**).⁸⁾ In the hydrosilylation of t-butylacetylene with TTMSS, the steric repulsion between t-butyl and tris(trimethylsilyl)silyl group forces the intermediary σ -radical to possess (E)-stereochemistry (**8**), therefore, the reaction gave only (E)-isomer (Scheme 2).

Hydrodesilylation of 1 with concd HCl proceeded in

Scheme 2.

acetonitrile (Scheme 3). Treatment of 1 with TMS-Cl-D₂O instead of concd HCl gave (Z)-1-deuterio-1-dodecene selectively. Moreover, the reaction of (Z)-1-deuterio-1-[tris(trimethylsilyl)silyl]-1-dodecene with concd HCl formed (E)-1-deuterio-1-dodecene exclusively. These results indicate that hydrodesilylation of 1 proceeds with retention of stereochemistry.⁹⁾ On the other hand, bromodesilylation of 1 gave 1-bromo-1-dodecene under low stereocontrol (Z/E=2.2/1).¹⁰⁾

(2) Reduction of Alkenyl Iodides with TTMSS. It was anticipated that reduction of 1silyl-2-iodo-1-alkenes with TTMSS would proceed via the same alkenyl radical as 4 in Scheme 1 and provide the same stereoisomeric mixtures of (Z)- and (E)alkenylsilane as hydrosilylation of acetylenes. This was indeed the case as indicated by the following experiments. Treatment of 1-dimethylphenylsilyl-2-iodo-1dodecene 9a with TTMSS in the presence of Et₃B at room temperature afforded (Z)-1-dimethylphenylsilyl-1-dodecene (10a) selectively (Z/E > 30/1, Entry 1 inTable 4). In contrast, the use of n-Bu₃SnH instead of TTMSS resulted in a reversal of stereoselectivity to give (E)-isomer 11a as a predominant product (Entry 2). Although alkenyl iodide **9a** reacted with n-Bu₃SnH

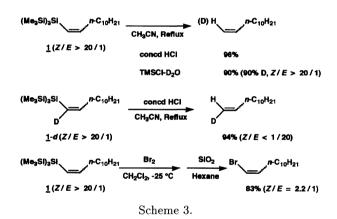


Table 4. Reduction of 1-Dimethylphenylsilyl-2-iodo-1-alkene

Entry	Substrate	$Method^{a)}$	Yield/%	$10/11^{\rm b)}$
1	9a	A	84	>30/1
2	9a	В	97	<1/20
3	9a	\mathbf{C}	96	2.7/1
4	9 b	A	97	14/1
5	9b	В	100	1/19
6	9 b	\mathbf{C}	100	1/5.4

a) Method A: TTMSS (1.1 equiv)- Et_3B (0.1 equiv), Method B: $n\text{-}Bu_3SnH$ (1.1 equiv)- Et_3B (0.1 equiv), Method C: $n\text{-}Bu_3SnH$ (1.1 equiv). b) The stereoisomeric ratios of products were determined by the examination of 1H NMR.

smoothly even in the absence of radical initiator such as Et_3B , the product was a 2.7/1 mixture of $\mathbf{10a}$ and $\mathbf{11a}$ in favor of $\mathbf{10a}$ (Entry 3). These two experiments shown in entries 2 and 3 suggest that $\mathbf{10a}$ is a primary product in the reduction of $\mathbf{9a}$ with $n\text{-Bu}_3\mathrm{SnH}$ as well as TTMSS, and Et_3B induced the isomerization of $\mathbf{10a}$ to thermodynamically more stable $\mathbf{11a}$ by the addition-elimination sequences of $n\text{-Bu}_3\mathrm{Sn}$ radical. Actually, $\mathbf{10a}$ was completely isomerized to $\mathbf{11a}$ by the treatment with $n\text{-Bu}_3\mathrm{SnH-Et}_3B$ (0.1 equiv, respectively) for 2 h at room temperature.

We also examined the reduction of 1-dimethylphenvlsilyl-2-iodo-3,3-dimethyl-1-butene (9b) with TTMSS or n-Bu₃SnH (Entries 4, 5, and 6 in Table 4). Since hydrosilylation of t-butylacetylene with TTMSS produced only (E)-isomer, it was expected that **9b** gave (E)-alkenylsilane selectively because of the steric repulsion between t-butyl and dimethylphenylsilyl group in alkenyl radical intermediate. The Et₃B-initiated reduction of 9b with TTMSS, however, was found to be analogous to the reduction of 9a, favoring (Z)-1dimethylphenylsilyl-3,3-dimethyl-1-butene (10b) over the (E)-isomer (11b) in a ratio of 14/1 (Entry 4). This result indicates that unlike radical 8 the intermediary (E)-alkenyl radical (13b) can isomerize to (Z)isomer (12b), because dimethylphenylsilyl group is less bulky than tris(trimethylsilyl)silyl group (Scheme 4). When n-Bu₃SnH was used as the reducing agent with or without Et₃B, (E)-alkenylsilane was obtained predominantly (Entries 5 and 6). As shown in Entry 3 in Table 4, in the absence of Et₃B, the isomerization of product do not proceed effectively. For this reason, the selective formation of 11b without Et₃B is not attributed to the isomerization of 10b, but the attack of n-Bu₃SnH to (E)-alkenyl radical **13b**. Namely, the selectivity of hydrogen-abstraction from n-Bu₃SnH is opposite to that from TTMSS. This difference can be explained by hydrogen-donating ability of the reducing agent. Chatgilialoglu et al.⁵⁾ have reported that the rate of hydrogen abstraction from TTMSS by primary alkyl radicals is ca. 4 times slower than the corresponding reaction with n-Bu₃SnH. It seems that, in the reduction of 9b with TTMSS, hydrogen abstraction is slower than the isomerization of 13b, therefore, TTMSS reacts with 12b in preference to 13b to avoid the steric hindrance of dimethylphenylsilyl group, and gives 10b exclusively. On the other hand, hydrogen

transfer from n-Bu₃SnH to 13b is faster than the isomerization of 13b. Thus, thermodynamically favored (E)-alkenyl radical abstracted hydrogen from n-Bu₃SnH to afford 11b selectively. In Entry 3, the selective formation of 10a is due to the facile isomerization of 13a in comparison with 13b. The steric repulsion between two substituents on double bond in 12a is much smaller than that in 12b.

Reduction of a variety of other alkenyl iodides with TTMSS under Et_3B initiator has been studied. The results are summarized in Table 5. The stereochemical results by the reduction with $n\text{-Bu}_3\text{SnH}$ in the presence or absence of Et_3B are also shown in Table 5. In general, the reduction with TTMSS- Et_3B system produced (Z)-alkenes selectivity with an exceptional example shown in Entry 1. On the other hand, $n\text{-Bu}_3\text{SnH}-Et_3B$ gave (E)-alkenes as main products to the exclusion of Entry 12.

It is worth to note several points in the reduction

Table 5. Stereoselective Reduction of Various Alkenyl Iodides

	<u>~</u>	PhH, r.t., 2 l	h -	+ \=	R ²
Entry	y Su	bstrate	$Method^{a)}$	Yield/%	$Z/E^{ m b)}$
1	n-C ₆ H ₁₁	_n-C ₆ H ₁₁	A	87	1/1.3
2	`	<u></u>	В	89	1/2.2
3	n-C ₁₀ H ₂₁	Ph	A	87	4.0/1
4		15	В	94	1/3.7
5			A	96	5.8/1
6	n-C ₁₀ H ₂₁	SIMe ₂ Ph	В	95	1/15
7		<u>16</u> `I	\mathbf{C}	97	1.3/1
8	f-Bu	<i>,n</i> -C ₁₀ H ₂₁	A	97	2.1/1
9		17	В	98	1/2.8
10	FBu	I 	A	99	2.1/1
11	#Bu_	Ph	A	77	>50/1
12	`	19	В	75	9/1
13			A	94	>50/1
14	#Bu	-< '	В	90	1/16
15		20 SIMe2Ph	\mathbf{C}	96	6.0/1
16	#Bu_	COOE	A	70	5.7/1
17	`	21	В	77	<1/100

a), b) Refer to Table 4.

with TTMSS-Et₃B. First, the stereochemical outcome was independent on the stereochemistry of starting material. For instance, the treatment of (E)-2,2-dimethyl-4-iodo-3-tetradecene (17) or (Z)-isomer (18) with TTMSS-Et₃B at room temperature for 2 h provided the same isomeric mixture of (Z)-2,2-dimethyl-3-tetradecene and (E)-isomer (Z/E=2.1/1, Entries 8 and 10). This result suggests that the firstly formed alkenyl radical isomerizes to the other isomer to reach the equilibrium before hydrogen abstraction from TTMSS. Secondary. comparisons of Entry 1 with 8, 3 with 11, and 5 with 13 show that (Z)-selectivity of the reduction improves with increase of the bulkiness of R¹ group. Thus, the severe steric repulsion between R¹ and TTMSS decrease in the formation of (E)-alkene. Moreover, when \mathbb{R}^2 is phenyl (19) or dimethylphenylsilyl group (20), the reaction results in higher (Z)-selectivity than the case that R^2 is n-decyl (17 or 18) or ethoxycarbonyl group (21). The geometry of intermediary alkenyl radical is responsible for the change of selectivity.

As depicted in Scheme 5, it is known that α -phenylalkenyl radical is a π -radical (linear radical). while α -alkyl- or α -alkoxycarbonylalkenyl is a σ -radical (bent radical). $^{12,13)}$ The attack of TTMSS from the syn side of t-butyl group in 22 suffers the steric hindrance more severely than in 23, because the direction of the attack of TTMSS is close to t-butyl group in **22**. Accordingly, the formation of (E)-alkene from 22 is strictly suppressed. The result shown in Entry 13 implies that α -silylalkenyl radical is a π -radical.⁸⁾ In addition, this assumption is supported by the following experiment. The reaction of **20** with *n*-Bu₃SnH in the absence of Et_3B gave (Z)-alkenylsilane selectively (Entry 15). If the intermediary radical is a σ -radical, it is considered that **20** affords (E)-alkenylsilane because of the steric repulsion between t-butyl and dimethylphenylsilyl and fast hydrogen abstraction from n-Bu₃SnH as shown in the reaction of **9b** (Entry 6 in Table 4).

In n-Bu₃SnH-Et₃B system, the reduction of alkenyl iodide bearing silyl or ethoxycarbonyl group (**16**, **20**, or **21**) gave (E)-alkene in high selectivity. Since addition of nucleophilic n-Bu₃Sn radical to alkenylsilane or α,β -unsaturated ester is much faster than simple olefins, the isomerization of products in Entries 6, 14, and 17 proceeds easily.

In conclusion, the addition of TTMSS to acetylenes

$$(Me_3SI)_3SIH$$

$$+Bu$$

Scheme 5.

provides us with a stereoselective synthetic method for (Z)-1-[tris(trimethylsilyl)silyl]-1-alkenes, since TTMSS radical cannot cause the isomerization of the resulting (Z)-alkenes into (E)-alkenes. Meantime, (E)-1-[tris(trimethylsilyl)silyl]-1-alkenes are produced on treatment of (Z)-1-[tris(trimethylsilyl)silyl]-1-alkenes with Ph₃GeH–Et₃B. Reduction of 1,2-disubstituted 1-iodo-1-alkenes with TTMSS–Et₃B affords (Z)-1,2-disubstituted-1-alkenes selectively.

Experimental

Distillation of the products was performed by use of Kugelrohr (Büchi), and boiling points are indicated by airbath temperature without correction. Melting point was obtained on a Yanako MP-50929 melting point apparatus and are uncorrected, too. 1 H NMR and 13 C NMR spectra were taken on a Varian GEMINI 300 spectrometer, CDCl₃ was used as solvent, and chemical shifts being given in δ with tetramethylsilane as an internal standard. IR spectra were determined on a JASCO IR-810 spectrometer and the mass spectra on a Hitachi M-80 machine. When m/z is less than 100, mass spectra are described in only case where its relative intensity is more than 50. The analyses were carried out at the Elemental Analyses Center of Kyoto University.

General Procedure for Et₃B Induced Hydrosilylation of 1-Dodecyne with Ph₃SiH, Ph₂SiH₂, or Me₃SiSiPh₂H. Hydrosilylation of 1-dodecyne with Ph₃SiH is representative. A hexane solution of Et₃B (0.96 M, 1 M=1 mol dm⁻³, 2.1 mL, 2.0 mmol) was added to a mixture of 1-dodecyne (0.166 g, 1.00 mmol) and Ph₃SiH (0.520 g, 2.00 mmol) at room temperature under argon atmosphere. After stirring for 88 h, the reaction mixture was concentrated and distilled to remove 1-dodecyne and Ph₃SiH in vacuo (0.50 Torr, 1 Torr=133.322 Pa, bath temp, 120 °C, 1 h). The residual oil was purified by silica-gel column chromatography using hexane as an eluent to give 1-triphenylsilyl-1-dodecene (0.179 g) in 42% yield.

(Z)-1-(Triphenylsilyl)-1-dodecene: Bp 160—164 °C (0.27 Torr, bath temp); IR (neat) 3062, 2920, 2850, 1602, 1428, 1110, 712, 698 cm⁻¹; ¹H NMR (CDCl₃) δ =0.85—1.32 (m, 19H, included 0.88 (t, J=6.9 Hz)), 1.86—1.95 (m, 2H), 6.02 (dt, J=14.0, 1.3 Hz, 1H), 6.71 (dt, J=14.0, 7.5 Hz, 1H), 7.31—7.42 (m, 9H), 7.54—7.59 (m, 6H); ¹³C NMR (CDCl₃) δ =14.14, 22.70, 29.04, 29.19, 29.33 (two carbons), 29.51 (two carbons), 31.91, 34.57, 122.52, 127.80, 129.28, 135.64, 135.71, 154.06; MS (70 eV) m/z (rel intensity) 427 (M⁺+1, 3.5), 426 (M⁺, 7.9), 286 (42), 285 (100), 259 (47), 207 (19), 184 (17), 183 (70), 182 (21), 181 (27), 105 (16). Found: C, 84.34; H, 9.04%. Calcd for C₃₀H₃₈Si: C, 84.44; H, 8.98%.

(*Z*)-1-(Diphenylsilyl)-1-dodecene: Bp 139—143 °C (0.55 Torr, bath temp); IR (neat) 2952, 2920, 2850, 2120, 1603, 1429, 1115, 800, 730, 697 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, J=6.8 Hz, 3H), 1.15—1.36 (m, 16H), 2.15—2.23 (m, 2H), 5.27 (d, J=5.3 Hz, 1H), 5.83 (ddt, J=13.8, 5.4, 1.2 Hz, 1H), 6.66 (dt J=13.8, 7.4 Hz, 1H), 7.31—7.42 (m, 6H), 7.54—7.60 (m, 4H); ¹³C NMR (CDCl₃) δ =14.14, 22.69, 29.14, 29.23, 29.34, 29.42, 29.57 (two carbons), 31.91, 33.76, 121.31, 127.97, 129.44, 134.57, 135.23, 153.74; MS (70 eV) m/z (rel intensity) 351 (M⁺+1, 0.3), 350 (M⁺, 1.4), 184 (20), 183 (100), 182 (30), 181 (24), 107 (15), 105 (34). Found: C, 82.44; H, 9.83%. Calcd for C₂₄H₃₄Si: C, 82.21; H, 9.77%.

(*E*)-1-(Diphenylsilyl)-1-dodecene: Bp 139—143 °C (0.55 Torr, bath temp); IR (neat) 2950, 2922, 2850, 2116, 1615, 1429, 1114, 807, 727, 696 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, J=6.7 Hz, 3H), 1.18—1.48 (m, 16H), 2.16—2.23 (m, 2H), 5.08 (d, J=3.1 Hz, 1H), 5.92 (ddt, J=18.5, 3.1, 1.5 Hz, 1H), 6.29 (dt, J=18.5, 6.2 Hz, 1H), 7.32—7.43 (m, 6H), 7.54—7.60 (m, 4H); ¹³C NMR (CDCl₃) δ =14.14, 22.69, 28.41, 29.19, 29.35, 29.47, 29.61 (two carbons), 31.91, 36.97, 121.78, 127.92, 129.53, 134.24, 135.40, 154.03; MS (70 eV) m/z (rel intensity) 351 (M⁺+1, 0.5), 350 (M⁺, 1.9), 184 (20), 183 (100), 182 (33), 181 (24), 107 (15), 105 (29). Found: C, 82.38; H, 9.93%. Calcd for C₂₄H₃₄Si: C, 82.21; H, 9.77%.

(Z)- 1- [Diphenyl(trimethylsilyl)silyl]- 1- dodecene: Bp 145—149 °C (0.33 Torr, bath temp); IR (neat) 2950, 2922, 2850, 1598, 1428, 1244, 1102, 851, 834, 736, 698 cm⁻¹;

1 H NMR (CDCl₃) δ =0.15 (s, 9H), 0.88 (t, J=6.9 Hz, 3H), 0.98—1.32 (m, 16H), 1.85—1.92 (m, 2H), 5.84 (dt, J=13.6, 1.2 Hz, 1H), 6.60 (dt, J=13.6, 7.3 Hz, 1H), 7.28—7.36 (m, 6H), 7.45—7.53 (m, 4H);

13 C NMR (CDCl₃) δ =-1.21, 14.15, 22.70, 29.20 (two carbons), 29.29, 29.41, 29.52 (two carbons), 31.91, 34.92, 122.97, 127.81, 128.57, 135.28, 136.71, 152.49; MS (70 eV) m/z (rel intensity) 423 (M⁺+1, 1.4), 422 (M⁺, 2.2), 349 (36), 287 (68), 197 (53), 183 (100), 135 (50), 121 (38), 107 (18), 105 (43). Found: C, 76.41; H, 10.01%. Calcd for C₂₇H₄₂Si₂: C, 76.70; H, 10.01%.

(*E*)- 1- [Diphenyl(trimethylsilyl)silyl]- 1- dodecene: Bp 141—145 °C (0.21 Torr, bath temp); IR (neat) 2920, 2850, 1428, 1244, 1103, 852, 834, 735, 698 cm⁻¹; ¹H NMR (CDCl₃) δ =0.17 (s, 9H), 0.88 (t, J=6.7 Hz, 3H), 1.20—1.44 (m, 16H), 2.16—2.23 (m, 2H), 5.94 (dt, J=18.5, 1.2 Hz, 1H), 6.11 (dt, J=18.5, 6.1 Hz, 1H), 7.29—7.38 (m, 6H), 7.44—7.51 (m, 4H); ¹³C NMR (CDCl₃) δ =-1.31, 14.14, 22.70, 28.71, 29.14, 29.36, 29.48, 29.62, 29.65, 31.92, 37.19, 123.74, 127.79, 128.68, 135.52, 136.35, 151.94; (MS (70 eV) m/z (relintensity) 424 (M⁺+2, 0.6), 423 (M⁺+1, 1.5), 422 (M⁺, 2) 349 (31), 287 (61), 197 (52), 183 (100), 135 (36), 121 (25), 105 (25). Found: C, 76.65; H, 9.80%. Calcd for C₂₇H₄₂Si₂: C, 76.70; H, 10.01%.

General Procedure for Et₃B Induced Hydrosilylation of Acetylenes with $(Me_3Si)_2SiPhH$ or $(Me_3Si)_3SiH$. Typical procedure is as follows. Under argon atmosphere, Et₃B (0.96 M hexane solution, 0.10 mL, 0.10 mmol) was added to a solution of 1-dodecyne (0.166 g, 1.00 mmol) and $(Me_3Si)_3SiH$ (0.274 g, 1.10 mmol) in benzene (2.0 mL) at room temperature. After stirring for 3 h, the reaction mixture was concentrated in vacuo. Purification by silica-gel column (hexane) yielded 1-[tris(trimethylsilyl)-silyl]-1-dodecene (0.407 g, 98%, Z/E=17/1).

(Z)-1-[Phenylbis(trimethylsilyl)silyl]-1-dodecene: Bp 128—132 °C (0.35 Torr, bath temp); IR (neat) 2952, 2922, 2850, 1244, 835, 697, 622 cm $^{-1}$; $^1\mathrm{H}$ NMR (CDCl₃) δ =0.14 (s, 18H), 0.88 (t, J=6.8 Hz, 3H), 1.14—1.35 (m, 16H), 1.91—1.99 (m, 2H), 5.67 (dt, J=13.3, 1.3 Hz, 1H), 6.53 (dt, J=13.3, 7.2 Hz, 1H), 7.25—7.31 (m, 3H), 7.40—7.45 (m, 2H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ =-0.49, 14.15, 22.70, 29.32, 29.48 (two carbons), 29.54 (three carbons), 31.91, 35.39, 121.37, 127.60, 135.12, 136.96, 151.11; MS (70 eV) m/z (rel intensity) 419 (M $^+$ +1, 1.0), 418 (M $^+$, 2.5), 179 (26), 178 (53), 163 (19), 135 (99), 121 (41), 116 (36), 73 (100). Found: C, 69.05; H, 11.36%. Calcd for C₂₄H₄₆Si₃: C, 68.82; H, 11.07%.

(E)-1-[Phenylbis(trimethylsilyl)silyl]-1-dodecene:

Bp 125—129 °C (0.30 Torr, bath temp); IR (neat) 2948, 2922, 2850, 1244, 835, 697 cm $^{-1};$ $^1\mathrm{H}$ NMR (CDCl $_3$) $\delta=0.14$ (s, 18H), 0.88 (t, J=6.7 Hz, 3H), 1.18—1.47 (m, 16H), 2.15—2.22 (m, 2H), 5.77 (dt, J=18.4 1.4 Hz, 1H), 6.13 (dt, J=18.4, 6.5 Hz, 1H), 7.26—7.32 (m, 3H), 7.40—7.46 (m, 2H); $^{13}\mathrm{C}$ NMR (CDCl $_3$) $\delta=-0.66$, 14.14, 22.69, 29.00, 29.07, 29.36, 29.48, 29.62, 29.67, 31.92, 37.47, 122.63, 127.65, 127.75, 135.21, 136.80, 150.50; MS (70 eV) m/z (rel intensity) 419 (M $^++1$, 1.0), 418 (M $^+$, 1.9), 193 (19), 179 (30), 178 (54), 163 (21), 135 (100), 121 (40), 116 (35), 73 (99). Found: C, 68.59; H, 11.25%. Calcd for $\mathrm{C}_{24}\mathrm{H}_{46}\mathrm{Si}_3$: C, 68.82; H, 11.07%.

(Z)- 1- [Tris(trimethylsilyl)silyl]- 1- dodecene (1): Bp 127—131 °C (0.38 Torr, bath temp); IR (neat) 2948, 2922, 2850, 1244, 832, 686, 621 cm $^{-1}$; $^{1}\mathrm{H}$ NMR (CDCl₃) δ =0.18 (s, 27H), 0.88 (t, J=6.7 Hz, 3H), 1.22—1.41 (m, 16H), 2.03—2.10 (m, 2H), 5.47 (dt, J=13.0, 1.5 Hz, 1H), 6.38 (dt, J=13.0, 7.0 Hz, 1H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ =1.09, 14.15, 22.70, 29.33, 29.59 (three carbons), 29.69, 29.80, 31.91, 35.65, 119.55, 149.48; MS (70 eV) m/z (rel intensity) 415 (M $^{+}$ +1, 0.6), 414 (M $^{+}$, 1.7), 175 (16), 174 (68), 131 (12), 129 (12), 117 (11), 73 (100). Found: C, 60.51; H, 11.87%. Calcd for C₂₁H₅₀Si₄: C, 60.78; H, 12.14%.

(*E*)- 1- [Tris(trimethylsilyl)silyl]- 1- dodecene (2): Bp 116—120 °C (0.33 Torr, bath temp); IR (neat) 2946, 2922, 2850, 1244, 832, 685, 622 cm⁻¹; 1 H NMR (CDCl₃) δ =0.16 (s, 27H), 0.88 (t, J=6.7 Hz, 3H), 1.21—1.39 (m, 16H), 2.05—2.13 (m, 2H), 5.47 (dt, J=18.2, 1.3 Hz, 1H), 5.97 (dt, J=18.2, 6.5 Hz, 1H); 13 C NMR (CDCl₃) δ =0.78, 14.14, 22.69, 28.99, 29.18, 29.35, 29.47, 29.61, 29.67, 31.92, 37.64, 120.36, 149.50; MS (70 eV) m/z (rel intensity) 416 (M⁺+2, 0.5), 415 (M⁺+1, 0.7), 414 (M⁺, 2.0), 189 (11), 175 (21), 174 (76), 131 (14), 129 (13), 117 (14), 73 (100). Found: C, 60.60; H, 12.35%. Calcd for C₂₁H₅₀Si₄: C, 60.78; H, 12.14%.

(Z)-1- Deuterio- 1- [tris(trimethylsilyl)silyl]- 1- dodecene (1-d): Bp 130—134 °C (0.40 Torr, bath temp); IR (neat) 2946, 2922, 2850, 1244, 834, 685, 615 cm⁻¹; ¹H NMR (CDCl₃) δ =0.18 (s, 27H), 0.88 (t, J=6.7 Hz, 3H), 1.22—1.40 (m, 16H), 2.03—2.10 (m, 2H), 6.38 (t, J=7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ =1.09, 14.14, 22.70 29.33, 29.59 (three carbons), 29.69, 29.80, 31.91, 35.61, 119.19 (t, J_{CD}=21.4 Hz), 149.38; MS (70 eV) m/z (rel intensity) 416 (M⁺+1, 0.6), 415 (M⁺, 1.6), 175 (20), 174 (70), 131 (10), 117 (11), 73 (100). Found: C, 60.38; H, 11.84; D, 0.47%. Calcd for C₂₁H₄₉DSi₄: C, 60.64; H, 11.87; D, 0.48%.

(E)- 1- Deuterio- 1- [tris(trimethylsilyl)silyl]- 1- dodecene (2-d): Bp 116—120 °C (0.30 Torr, bath temp); IR (neat) 2946, 2922, 2852, 1244, 835, 686, 621 cm⁻¹; ¹H NMR (CDCl₃) δ =0.16 (s, 27H), 0.88 (t, J=6.7 Hz, 3H), 1.21—1.38 (m, 16H), 2.06—2.12 (m, 2H), 5.93—5.99 (m, 1H); ¹³C NMR (CDCl₃) δ =0.79, 14.14, 22.70, 28.99, 29.18, 29.36, 29.48, 29.62, 29.68, 31.92, 37.57, 119.99 (t, J_{CD}=21.2 Hz), 149.43; MS (70 eV) m/z (rel intensity) 416 (M⁺+1, 0.6), 415 (M⁺, 1.8), 176 (11), 175 (19), 174 (74), 131 (10), 73 (100). Found: C, 60.54; H, 11.74; D, 0.47%. Calcd for C₂₁H₄₉DSi₄: C, 60.64; H, 11.87; D, 0.48%.

(*Z*)-3-[Tris(trimethylsilyl)silyl]-2-propen-1-ol: Mp 105-107 °C (Hexane); IR (CDCl₃) 3610, 2948, 2890, 1246, 1005, 922, 836, 714, 707, 687, 621 cm⁻¹; ¹H NMR (CDCl₃) δ =0.19 (s, 27H), 1.42 (bs, 1H), 4.14 (dd, J=6.6, 1.1 Hz, 2H), 5.78 (dt, J=13.2, 1.1 Hz, 1H), 6.56 (dt, J=13.2, 6.6

Hz, 1H); 13 C NMR (CDCl₃) δ =0.89, 65.00, 124.90, 146.27; MS (20 eV) m/z (rel intensity) 233 (M⁺+2-SiMe₃, 2.1), 232 (M⁺+1-SiMe₃, 4.5), 231 (M⁺-SiMe₃, 18), 215 (46), 157 (16), 141 (17), 131 (26), 117 (20), 73 (100). Found: C, 47.20; H, 10.33%. Calcd for C₁₂H₃₂OSi₄; C, 47.30; H, 10.58%.

(*E*)-3-[Tris(trimethylsilyl)silyl]-2-propen-1-ol: Mp 76—78 °C (Hexane); IR (CDCl₃) 3608, 2946, 2890, 1245, 1074, 984, 837, 758, 731, 728, 687, 622 cm⁻¹; ¹H NMR (CDCl₃) δ =0.17 (s, 27H), 1.47 (bs, 1H), 4.15 (dd, J=4.9, 1.6 Hz, 2H), 5.84 (dt, J=18.5, 1.6 Hz, 1H), 6.18 (dt, J=18.5, 4.9 Hz, 1H); ¹³C NMR (CDCl₃) δ =0.76, 66.41, 122.73, 146.38; MS (20 eV) m/z (rel intensity) 231 (M⁺ – SiMe₃, 2.7), 215 (28), 199 (29), 175 (32), 141 (32), 131 (55), 117 (33), 73 (100). Found: C, 47.16; H, 10.70%. Calcd for C₁₂H₃₂OSi₄: C, 47.30; H, 10.58%.

(Z)-1-(2-Tetrahydropyranyloxy)-3-[tris(trimethylsilyl)silyl]-2-propene: Bp 96—100 °C (0.23 Torr, bath temp); IR (neat) 2944, 2892, 1258, 1245, 1119, 1061, 1028, 834, 686, 620 cm $^{-1}$; 1 H NMR (CDCl₃) δ =0.19 (s, 27H), 1.48—1.92 (m, 6H), 3.47—3.54 (m, 1H), 3.84—3.92 (m, 1H), 3.97 (ddd, J=12.1, 7.0, 1.3 Hz, 1H), 4.28 (ddd, J=12.1, 5.6, 1.5 Hz, 1H), 4.64 (dd, J=3.9, 3.1 Hz, 1H), 5.77 (ddd, J=13.5, 1.5, 1.3 Hz, 1H), 6.54 (ddd, J=13.5, 7.0, 5.6 Hz, 1H); 13 C NMR (CDCl₃) δ =0.93, 19.47, 25.47, 30.67, 62.17, 69.46, 98.47, 124.20, 144.72; MS (20 eV) m/z (rel intensity) 231 (M $^{+}$ -C₅H₈O-SiMe₃, 18), 215 (14), 199 (6.3), 157 (5.1), 147 (6.3), 141 (5.8), 133 (7.7), 131 (10), 117 (8.5), 85 (100). Found: C, 52.40; H, 10.62%. Calcd for C₁₇H₄₀O₂Si₄: C, 52.51; H, 10.37%.

(*E*)-1-(2-Tetrahydropyranyloxy)-3-[tris(trimethylsilyl)silyl]-2-propene: Bp 97—101 °C (0.39 Torr, bath temp); IR (neat) 2944, 2890, 1245, 1120, 1078, 1025, 867, 831, 686, 622 cm⁻¹; ¹H NMR (CDCl₃) δ =0.17 (s, 27H), 1.48—1.92 (m, 6H), 3.45—3.53 (m, 1H), 3.85—3.93 (m, 1H), 4.05 (ddd, J=13.2, 6.1, 1.3 Hz, 1H), 4.22 (ddd, J=13.2, 4.6, 1.5 Hz, 1H), 4.62 (dd, J=4.2, 2.8 Hz, 1H), 5.84 (ddd, J=18.4, 1.5, 1.3 Hz, 1H), 6.08 (ddd, J=18.4, 6.1, 4.6 Hz, 1H); ¹³C NMR (CDCl₃) δ =0.77, 19.63, 25.49, 30.69, 62.39, 70.27, 97.23, 124.85, 143.86; MS (20 eV) m/z (rel intensity) 215 (M⁺ - C₅H₈O - SiMe₃, 10), 199 (11), 191 (15), 175 (11), 147 (18), 141 (13), 133 (22), 131 (24), 117 (21), 85 (94), 73 (100). Found: C, 52.71; H, 10.64%. Calcd for C₁₇H₄₀O₂Si₄: C, 52.51; H, 10.37%.

(Z)-4-[Tris(trimethylsilyl)silyl]-3-buten-1-ol: Bp 86—90 °C (0.24 Torr, bath temp); IR (neat) 3310 (bs), 2946, 2890, 1244, 1047, 833, 686, 621 cm $^{-1}$; $^1\mathrm{H}\,\mathrm{NMR}$ (CDCl₃) $\delta\!=\!0.19$ (s, 27H), 1.45 (bs, 1H), 2.39 (dtd, $J\!=\!7.1$, 6.6, 1.4 Hz, 2H), 3.71 (t, $J\!=\!6.6$ Hz, 2H), 5.71 (dt, $J\!=\!13.1$, 1.4 Hz, 1H), 6.40 (dt, $J\!=\!13.1$, 7.1 Hz, 1H); $^{13}\mathrm{C}\,\mathrm{NMR}$ (CDCl₃) $\delta\!=\!1.09$, 38.49, 62.31, 124.32, 144.16; MS (20 eV) m/z (rel intensity) 247 (M $^+\!+\!2\!-\!\mathrm{SiMe_3}$, 2.5), 246 (M $^+\!+\!1\!-\!\mathrm{SiMe_3}$, 4.8), 245 (M $^+\!-\!\mathrm{SiMe_3}$, 18), 229 (32), 201 (20), 191 (21), 175 (27), 133 (26), 131 (37), 117 (27), 73 (100). Found: C, 48.79; H, 10.96%. Calcd for $\mathrm{C_{13}H_{34}OSi_4}$: C, 48.99; H, 10.75%.

(*E*)-4-[Tris(trimethylsilyl)silyl]-3-buten-1-ol: Bp 92—96 °C (0.30 Torr, bath temp); IR (CDCl₃) 3618, 2946, 2890, 1245, 1044, 982, 837, 687, 623 cm⁻¹; ¹H NMR (CDCl₃) δ =0.17 (s, 27H), 1.48 (bs, 1H), 2.40 (dtd, J=6.7, 6.4, 1.2 Hz, 2H), 3.64 (t, J=6.4 Hz, 2H), 5.70 (dt, J=18.2, 1.2 Hz, 1H), 5.96 (dt, J=18.2, 6.7 Hz, 1H); ¹³C NMR (CDCl₃) δ =0.76, 40.93, 61.68, 125.91, 144.19; MS (20 eV)

m/z (rel intensity) 318 (M⁺, 0.4), 201 (16), 191 (55), 175 (44), 155 (17), 133 (26), 131 (49), 117 (27), 73 (100). Found: C, 49.22; H, 10.82%. Calcd for $C_{13}H_{34}OSi_4$: C, 48.99; H, 10.75%.

AIBN Induced Hydrosilylation of 1-Dodecyne with $(Me_3Si)_3SiH$. A solution of 1-dodecyne (0.166 g, 1.00 mmol), $(Me_3Si)_3SiH$ (0.273 g, 1.10 mmol), and AIBN (0.016 g, 0.10 mmol) in benzene (2 mL) was refluxed for 30 min. The reaction mixture was concentrated in vacuo, followed by purification by silica-gel column to give 1-[tris-(trimethylsilyl)silyl]-1-dodecene (0.407 g, 98%, Z/E=4/1).

General Procedure for Isomerization of (Z)-Alkenylsilane to (E)-Isomer. Et₃B (0.96 M hexane solution, 0.52 mL, 0.50 mmol) was added to a benzene (5.0 mL) solution of (Z)-rich alkenylsilane (1.00 mmol) and Ph₃GeH (0.152 g, 0.500 mmol), and the resulting mixture was heated at 60 °C under argon atmosphere. After stirring for 12—16 h, the reaction mixture was concentrated in vacuo. Purification by silica-gel column afforded (E)-rich alkenylsilane.

Hydrodesilylation of 1-[Tris(trimethylsilyl)silyl]-1dodecene. Concd HCl (ca. 36%, 0.35 mL) was added to a solution of 1-[tris(trimethylsilyl)silyl]-1-dodecene (0.415 g, 1.00 mmol) in acetonitrile (5.0 mL) and the mixture was heated at reflux. After stirring for 2 h, the reaction mixture was cooled to room temperature, and aqueous NaOH (1.0 M, 10 mL) was poured. The mixture was stirred for 1 h, then extracted with hexane (20 mL×3). Concentration of the dried (Na₂SO₄) organic layer and purification by silica-gel column gave 1-dodecene (0.161 g) in 96% yield. The use of Me₃SiCl (0.50 mL, 4.0 mmol) and D₂O (0.072 mL, 4.0 mmol) instead of concd HCl afforded 1-deuterio-1dodecene (0.152 g, 90% D, Z/E > 20/1) in 90% yield. Hydrodesilylation of (Z)-1-deuterio-1-[tris(trimethylsilyl)silyl]-1-dodecene was performed according to the same procedure as described above.

Bromodesilylation of 1-[Tris(trimethylsilyl)silyl]-1-dodecene. Bromine (1.0 M CH₂Cl₂ solution, 2.0 mL, 2.0 mmol) was added dropwise to a solution of 1-[tris-(trimethylsilyl)silyl]-1-dodecene (0.207 g, 0.500 mmol) in CH₂Cl₂ at −25 °C. After stirring for 30 min, the reaction mixture was treated with aqueous Na₂S₂O₃ (10%, 2.0 mL), and immediately warmed to room temperature. The resulting mixture was poured into water (20 mL), and extracted with Et₂O (20 ml×2). The combined organic layer was dried over Na₂SO₄, then concentrated in vacuo. The crude product was treated with silica-gel (1.0 g) in hexane (5 ml) for 2 h at room temperature. After filtration of the mixture through Na₂SO₄ column, the filtrate was concentrated in vacuo. The residual oil was purified by silica-gel column (hexane) to give 1-bromo-1-dodecene in 83% yield (0.103 g, Z/E=2.3/1).

Synthesis of Alkenyl Iodide. Silylmagnesation of 1-dodecyne and t-butylacetylene followed by quenching with iodine afforded (Z)-1-dimethylphenylsilyl-2-iodo-1-alkene 9a and 9b. Alkenyl iodide 14 or 15 were prepared by hydroiodination of the corresponding acetylene according to the reported procedure. Alkenyl iodide 16 was derived from 1-dimethylphenylsilyl-1-dodecyne by hydroalumination followed by the treatment with iodine. On the other hand, Et₃B-induced radical additions of t-butyl iodide to 1-dodecyne, phenylacetylene, (dimethylphenylsilyl)acetylene, and

ethyl propiolate gave alkenyl iodide 17 with 18, 19, 20, and 21, respectively. 17)

(Z)-1-Dimethylphenylsilyl-2-iodo-1-dodecene (9a): Bp 118—122 °C (0.44, Torr, bath temp); IR (neat) 2952, 2922, 2850, 1593, 1247, 1112, 833, 814, 728, 696 cm⁻¹; ¹H NMR (CDCl₃) δ =0.47 (s, 6H), 0.88 (t, J=6.7 Hz, 3H), 1.26 (bs, 14H), 1.48—1.60 (m, 2H) 2.53—2.58 (m, 2H), 6.50 (s, 1H), 7.33—7.38 (m, 3H), 7.55—7.59 (m, 2H); ¹³C NMR (CDCl₃) δ =-2.19, 14.14, 22.69, 28.11, 29.25, 29.32, (two carbons), 29.55, (two carbons), 31.90, 50.99, 125.53, 127.55, 128.98, 133.99, 134.89, 138.04; MS (70 eV) m/z (rel intensity) 302 (M⁺+1-I, 8.5), 301 (M⁺-I, 22), 286 (4.3), 285 (14), 247 (6.3), 137 (5.4), 136 (17), 135 (100), 121 (9.5), 105 (5.2). Found: C, 56.32; H, 7.91%. Calcd for C₂₀H₃₃SiI: C, 56.06; H, 7.76%.

(Z)-1-Dimethylphenylsilyl-2-iodo-3,3-dimethyl-1-butene (9b): Bp 75—79 °C (0.60 Torr, bath temp); IR (neat) 2964, 1247, 1222, 1115, 903, 836, 813, 728, 697, 645 cm⁻¹; 1 H NMR (CDCl₃) δ =0.48 (s, 6H), 1.18 (s, 9H), 6.65 (s, 1H), 7.33—7.39 (m, 3H), 7.54—7.59 (m, 2H); 13 C NMR (CDCl₃) δ = -1.88, 30.36, 43.49, 127.73, 128.87, 131.78, 133.99, 138.40, 142.24; MS (70 eV) m/z (rel intensity) 218 (M⁺+1-I, 9.7), 217 (M⁺-I, 36), 201 (17), 136 (16), 135 (100), 105 (13). Found: C, 48.63; H, 6.09%. Calcd for C₁₄H₂₁SiI: C, 48.84; H, 6.15%.

(*E*)-1-Iodo-1-phenyl-1-dodecene (15): Bp 108—112 °C (0.28 Torr, bath temp); IR (neat) 2950, 2920, 2850, 752, 691 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, J=6.6 Hz, 3H), 1.23—1.42 (m, 14H), 1.46—1.56 (m, 2H), 2.27—2.34 (m, 2H), 5.89 (t, J=6.8 Hz, 1H), 7.21—7.32 (m, 3H), 7.42—7.46 (m, 2H); ¹³C NMR (CDCl₃) δ =14.14, 22.69, 28.31, 29.27, 29.34, 29.50, 29.59 (two carbons), 31.90, 37.76, 104.75, 128.11, 128.54, 139.11, 139.19, 143.23; MS (70 eV) m/z (rel intensity) 371 (M⁺+1, 1.7), 370 (M⁺, 4.7), 131 (12), 117 (100), 126 (34), 115 (29), 91 (95). Found: C, 58.36; H, 7.17%. Calcd for C₁₈H₂₇I: C, 58.38; H, 7.35%.

(*E*)-1-Dimethylphenylsilyl-1-iodo-1-dodecene (16): Bp 104—108 °C (0.22 Torr, bath temp); IR (neat) 2950, 2920, 2850, 1250, 1112, 836, 822, 776, 732, 699 cm⁻¹; 1 H NMR (CDCl₃) δ =0.54 (s, 6H), 0.88 (t, J=6.7 Hz, 3H), 1.02—1.34 (m, 16H), 1.78—1.87 (m, 2H), 7.26 (t, J=8.0 Hz, 1H), 7.33—7.40 (m, 3H), 7.53—7.59 (m, 2H); 13 C NMR (CDCl₃) δ =0.35, 14.14, 22.69, 28.84, 28.99, 29.30 (two carbons), 29.49, 29.54, 31.89, 35.47, 103.25, 127.91, 129.41, 133.76, 137.56, 158.52; MS (70 eV) m/z (rel intensity) 428 (M⁺, 0.4), 302 (5.1), 301 (17), 247 (15), 185 (8.4), 145 (7.7), 136 (14), 135 (100), 121 (9). Found: C, 56.07; H, 7.58%. Calcd for C₂₀H₃₃SiI: C, 56.06; H, 7.76%.

(*E*)-4-Iodo-2,2-dimethyl-3-tetradecene (17): Bp 75—80 °C (0.44 Torr, bath temp); IR (neat) 2954, 2922, 2850, 1465, 1364 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, J=6.7 Hz, 3H), 1.12 (s, 9H), 1.27 (bs, 14H), 1.50—1.59 (m, 2H), 2.41—2.46 (m, 2H), 6.23 (s, 1H); ¹³C NMR (CDCl₃) δ =14.13, 22.68, 28.77, 29.32, 29.50, 29.57 (two carbons), 30.28, 30.91, 31.89, 36.84, 40.51, 106.31, 150.65; MS (70 eV) m/z (rel intensity) 351 (M⁺+1, 0.9), 350 (M⁺, 5.2), 224 (1.4), 223 (1.6), 111 (16), 97 (59), 83 (100), 69 (62), 57 (64). Found: C, 54.61; H, 9.08%. Calcd for C₁₆H₃₁I: C, 54.86; H, 8.92%.

(Z)-4-Iodo-2,2-dimethyl-3-tetradecene (18): Bp 78—82 °C (0.45 Torr, bath temp); IR (neat) 2952, 2922, 2852, 1460, 1362, 1201 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t,

 $J\!=\!6.7$ Hz, 3H), 1.18 (s, 9H), 1.26 (bs, 14H), 1.45—1.55 (m, 2H), 2.41—2.46 (m, 2H), 5.88 (s, 1H); $^{13}\mathrm{C}$ NMR (CDCl₃) $\delta\!=\!14.13, 22.69, 27.99, 29.34$ (two carbons), 29.43, 29.58 (two carbons), 29.83, 31.90, 33.11, 47.97, 102.70, 143.07; MS (70 eV) m/z (rel intensity) 351 (M⁺+1, 1.0), 350 (M⁺, 6.7), 224 (1.1), 223 (5.4), 111 (14), 97 (81), 83 (100), 69 (71), 57 (66), 55 (55). Found: C, 54.76; H, 9.09%. Calcd for $\mathrm{C_{16}H_{31}I:}$ C, 54.86; H, 8.92%.

1- Iodo- 3, 3- dimethyl- 1- phenyl- 1- butene (19, $E: Z\!=\!91:9$): Bp 57—61 °C (0.22 Torr, bath temp); IR (neat) 2956, 830, 765, 697, 681 cm⁻¹; ¹H NMR (CDCl₃) $\delta\!=\!0.89$ (s, 8.19H), 1.29 (s, 0.81H), 6.24 (s, 0.09H), 6.47 (s, 0.91H), 7.20—7.42 (m, 5H); ¹³C NMR (CDCl₃) for (E)-isomer $\delta\!=\!30.58$, 38.10, 93.70, 127.89 (bs), 144.16, 152.46; MS (70 eV) m/z (rel intensity) 286 (M⁺, 1.6), 160 (16), 159 (100), 144 (12), 143 (13), 129 (25), 128 (23), 117 (28), 115 (14), 103 (13), 102 (17), 57 (63). Found: C, 50.61; H, 5.37%. Calcd for $C_{12}H_{15}I$: C, 50.37; H, 5.28%.

(Z)-1-Dimethylphenylsilyl-1-iodo-3,3-dimethyl-1-butene (20): Mp 53—54 °C (Hexane); IR (CDCl₃) 2958, 1251, 1114, 866, 828, 796, 777, 732, 701 cm⁻¹; ¹H NMR (CDCl₃) δ =0.45 (s, 6H), 1.21 (s, 9H), 6.58 (s, 1H), 7.33—7.43 (m, 3H), 7.52—7.56 (m, 2H); ¹³C NMR (CDCl₃) δ =-2.39, 29.35, 36.17, 103.34, 127.77, 129.33, 134.19, 136.53, 157.27; MS (70 eV) m/z (rel intensity) 345 (M⁺+1, 0.3), 344 (M⁺, 1.2), 247 (7.5), 218 (5.4), 217 (21), 136 (14), 135 (100). Found: C, 48.59; H, 5.98%. Calcd for C₁₄H₂₁SiI: C, 48.84; H, 6.15%.

Ethyl 2- Iodo- 4, 4- dimethyl- 2- pentenoate (21, E: Z=9:1): Bp 66—70 °C (5 Torr, bath temp); IR (neat) 2956, 1727, 1367, 1219, 1194, 1026 cm⁻¹; ¹H NMR (CDCl₃) δ =1.10 (s, 8.1H), 1.27 (s, 0.9H), 1.32 (t, J=7.1 Hz, 3H), 4.24 (q, J=7.1 Hz, 1.8H), 4.25 (q, J=7.1 Hz, 0.2H), 6.34 (s, 0.9H), 7.63 (s, 0.1H); ¹³C NMR (CDCl₃) for (E)-isomer δ =13.76, 29.12, 38.43, 61.95, 79.14, 154.74, 166.79; MS (70 eV) m/z (rel intensity) 283 (M⁺+1, 2.1), 282 (M⁺, 15), 239 (12), 237 (11), 112 (18), 110 (19), 109 (100), 81 (65), 41 (76). Found: C, 38.49; H, 5.31%. Calcd for C₉H₁₅O₂I: C, 38.31; H, 5.36%.

General Procedure for Reduction of Alkenyl Iodide with (Me₃Si)₃SiH-Et₃B or n-Bu₃SnH-Et₃B. Et₃B (0.96 M, 0.10 mL, 0.10 mmol) was added to a benzene (2.0 mL) solution of alkenyl iodide (1.00 mmol) and (Me₃Si)₃SiH (0.274 g, 1.10 mmol) at room temperature under argon atmosphere. The mixture was stirred for 2 h, followed by an addition of aqueous NaOH (1.0 M, 10 mL). After stirring for another 2 h, the resultant mixture was extracted with hexane (10 mL×3). Combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residual oil was purified by silica-gel column.

The reaction conditions for reduction with $n\text{-Bu}_3\mathrm{SnH}$ was similar to those with $(\mathrm{Me}_3\mathrm{Si})_3\mathrm{SiH}$. The work-up procedure is as follows. After stirring for 2 h, the reaction mixture was concentrated in vacuo, and the residue was dissolved in $\mathrm{CH}_2\mathrm{Cl}_2$ (10 mL). Anhydrous KF (1.0 g) and saturated aqueous KF (2.0 mL) was added to the $\mathrm{CH}_2\mathrm{Cl}_2$ solution. After stirring for several hours, resulting precipitate was filtered through $\mathrm{Na}_2\mathrm{SO}_4$, and the filtrate was concentrated in vacuo. After the residue was dissolved in hexane (1.0 mL), the solution was submitted to silica-gel column.

(Z)-1-Dimethylphenylsilyl-1-dodecene (10a): Bp 96—100 °C (0.58 Torr, bath temp); IR (neat) 2952, 2920,

2850, 1605, 1248, 1112, 834, 820, 777, 727, 698 cm⁻¹;

¹H NMR (CDCl₃) δ =0.37 (s, 6H), 0.88 (t, J=6.8 Hz, 3H), 1.14—1.33 (m, 16H), 1.99—2.07 (m, 2H), 5.61 (dt, J=13.9, 1.2 Hz, 1H), 6.43 (dt, J=13.9, 7.5 Hz, 1H), 7.32—7.37 (m, 3H), 7.52—7.57 (m, 2H); ¹³C NMR (CDCl₃) δ =-0.80, 14.13, 22.69, 29.28, 29.33, 29.50 (two carbons), 29.58 (two carbons), 31.91, 33.78, 126.36, 127.70, 128.71, 133.69, 139.80, 151.14; MS (70 eV) m/z (rel intensity) 303 (M⁺+1, 1.2), 302 (M⁺, 4.1), 288 (16), 287 (50), 162 (39), 161 (50), 148 (21), 135 (91), 121 (100), 105 (23). Found: C, 79.42; H, 11.48%. Calcd for C₂₀H₃₄Si: C, 79.39; H, 11.33%.

(Z)-1-Dimethylphenylsilyl-3,3-dimethyl-1-butene (10b): Bp 67—71 °C (5 Torr, bath temp); IR (neat) 2952, 1596, 1248, 1112, 834, 821, 785, 729, 699, 670 cm⁻¹; ¹H NMR (CDCl₃) δ =0.41 (s, 6H), 0.96 (s, 9H), 5.51 (d, J=15.6 Hz, 1H), 6.48 (d, J=15.6 Hz, 1H), 7.31—7.37 (m, 3H), 7.52—7.57 (m, 2H); ¹³C NMR (CDCl₃) δ =0.84, 30.06, 35.65, 122.51, 127.62, 128.60, 133.70, 140.86, 161.66; MS (70 eV) m/z (rel intensity) 219 (M⁺+1, 0.2), 218 (M⁺, 1.7), 203 (34), 161 (56), 136 (15), 135 (100), 125 (10), 121 (38), 105 (17). Found: C, 77.01; H, 10.39%. Calcd for C₁₄H₂₂Si: C, 76.99; H, 10.15%.

(*E*)-1-Dimethylphenylsilyl-3,3-dimethyl-1-butene (11b): Bp 74—78 °C (5 Torr, bath temp); IR (neat) 2954, 1612, 1248, 1113, 994, 844, 824, 731, 697 cm⁻¹; ¹H NMR (CDCl₃) δ =0.32 (s, 6H), 1.02 (s, 9H), 5.65 (d, J=19.0 Hz, 1H), 6.13 (d, J=19.0 Hz, 1H), 7.33—7.38 (m, 3H), 7.49—7.56 (m, 2H); ¹³C NMR (CDCl₃) δ =-2.37, 29.04, 35.22, 120.19, 127.66, 128.72, 133.82, 139.59, 159.53; MS (70 eV) m/z (rel intensity) 219 (M⁺+1, 0.8), 218 (M⁺, 4.1), 203 (34), 162 (10), 161 (61), 148 (11), 136 (14), 135 (100), 121 (51), 105 (21), 73 (56). Found: C, 77.25; H, 10.12%. Calcd for C₁₄H₂₂Si: C, 76.99; H, 10.15%.

(*Z*)-1-Phenyl-1-dodecene: Bp 78—82 °C (0.45 Torr, bath temp); IR (neat) 2952, 2920, 2850, 1466, 767, 697 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, J=6.6 Hz, 3H), 1.25 (bs, 14H), 1.40—1.48 (m, 2H), 2.28—2.36 (m, 2H), 5.66 (dt, J=11.6, 7.3 Hz, 1H), 6.40 (d, J=11.6 Hz, 1H), 7.19—7.35 (m, 5H); ¹³C NMR (CDCl₃) δ =14.14, 22.69, 28.65, 29.36 (two carbons), 29.52, 29.61 (two carbons), 29.99, 31.91, 126.37, 128.07, 128.59, 128.70, 133.30, 137.79; MS (70 eV) m/z (rel intensity) 245 (M⁺+1, 7.6), 244 (M⁺, 20), 118 (21), 117 (74), 116 (10), 115 (18), 105 (16), 104 (100). Found: C, 88.71; H, 11.76%. Calcd for C₁₈H₂₈; C, 88.45; H, 11.55%.

(E)-1-Phenyl-1-dodecene: Bp 79—84 °C (0.43 Torr, bath temp); IR (neat) 2922, 2850, 962, 690 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, J=6.7 Hz, 3H), 1.27 (bs, 14H), 1.41—1.50 (m, 2H), 2.17—2.24 (m, 2H), 6.23 (dt, J=15.8 Hz, 1H), 6.37 (d, J=15.8 Hz, 1H), 7.15—7.21 (m, 1H), 7.25—7.36 (m, 4H); ¹³C NMR (CDCl₃) δ =14.14, 22.70, 29.24, 29.36 (two carbons), 29.54, 29.63 (two carbons), 31.91, 33.06, 125.86, 126.71, 128.43, 129.60, 131.25, 137.91; MS (70 eV) m/z (rel intensity) 245 (M⁺ +1, 7.5), 244 (M⁺, 19), 118 (20), 117 (86), 115 (18), 105 (12), 104 (100). Found: C, 88.50; H, 11.74%. Calcd for C₁₈H₂₈: C, 88.45; H, 11.55%.

(*Z*)-2,2-Dimethyl-3-tetradecene: Bp 63—67 °C (0.55 Torr, bath temp); IR (neat) 2996, 2952, 2920, 2852, 1466, 1362 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, *J*=6.6 Hz, 3H), 1.10 (s, 9H), 1.26 (bs, 16H), 2.12—2.19 (m, 2H), 5.15 (dt, *J*=12.0, 7.3 Hz, 1H), 5.30 (dt, *J*=12.0, 1.6 Hz, 1H); ¹³C NMR (CDCl₃) δ =14.13, 22.69, 28.38, 29.35, 29.42, 29.64 (two carbons), 30.31, 31.16 (two carbons), 31.91, 33.05,

129.15, 139.54; MS (70 eV) m/z (rel intensity) 225 (M⁺+1, 0.7), 224 (M⁺, 3.2), 111 (7.3), 83 (100), 69 (57). Found: C, 85.68; H, 14.63%. Calcd for $C_{16}H_{32}$: C, 85.63; H, 14.37%.

(*E*)-2,2-Dimethyl-3-tetradecene: Bp 63—67 °C (0.55 Torr, bath temp); IR (neat) 2954, 2922, 2852, 1460, 970 cm⁻¹; ¹H NMR (CDCl₃) δ =0.88 (t, J=6.6 Hz, 3H), 0.98 (s, 9H), 1.20—1.35 (m, 16H), 1.92—1.99 (m, 2H), 5.30 (dt J=15.6, 6.4 Hz, 1H), 5.42 (dt, J=15.6, 1.0 Hz, 1H); ¹³C NMR (CDCl₃) δ =14.14, 22.70, 29.14, 29.36, 29.52, 29.64 (two carbons), 29.75, 29.81 (two carbons), 31.92, 32.67, 124.76, 141.36; MS (70 eV) m/z (rel intensity) 225 (M⁺+1, 0.8), 224 (M⁺, 4.5), 111 (11), 83 (100), 69 (71). Found: C, 85.83; H, 14.45%. Calcd for C₁₆H₃₂: C, 85.63; H, 14.37%.

Ethyl (*Z*)-4,4-Dimethyl-2-pentenoate: Bp 64—68 °C (80 Torr, bath temp); IR (neat) 2956, 2906, 1728, 1638, 1385, 1363, 1202, 1179, 1032 cm⁻¹; 1 H NMR (CDCl₃) δ =1.20 (s, 9H), 1.30 (t, J=7.1 Hz, 3H), 4.17 (q, J=7.1 Hz, 2H), 5.65 (d, J=13.0 Hz, 1H), 6.00 (d, J=13.0 Hz, 1H); 13 C NMR (CDCl₃) δ =14.15, 29.59, 33.83, 60.17, 118.61, 154.77, 166.82; MS (70 eV) m/z (rel intensity) 157 (M⁺+1, 0.8), 156 (M⁺, 7.5), 141 (34), 113 (52), 111 (61), 83 (100), 55 (55), 41 (69). Found: C, 69.43; H, 10.50%. Calcd for C₉H₁₆O₂: C, 69.19; H, 10.32%.

Ethyl (*E*)-4,4-Dimethyl-2-pentenoate: Bp 72—76 °C (53 Torr, bath temp); IR (neat) 2960, 1721, 1651, 1367, 1311, 1300, 1260, 1204, 1165 cm⁻¹; ¹H NMR (CDCl₃) δ =1.08 (s, 9H), 1.30 (t, J=7.1 Hz, 3H), 4.19 (q, J=7.1 Hz, 2H), 5.73 (d, J=15.9 Hz, 1H), 6.97 (d, J=15.9 Hz, 1H); ¹³C NMR (CDCl₃) δ =14.28, 28.62, 33.74, 60.20, 116.62, 159.09, 167.35; MS (70 eV) m/z (rel intensity) 157 (M⁺+1, 1.5), 156 (M⁺, 15), 141 (37), 113 (38), 111 (68), 83 (100), 41 (56). Found: C, 68.89; H, 10.51%. Calcd for C₉H₁₆O₂: C, 69.19; H, 10.32%.

References

- 1) I. Ojima, "The Chemistry of Organic Silicon Compounds," ed by S. Patai and Z. Rappoport, Wiley, Chichester (1989), Vol. 2, Chap. 25.
 - 2) L. H. Sommer, E. W. Pietrusza, and F. C. Whitmore,

- J. Am. Chem. Soc., 69, 188 (1947); C. A. Burkhard and
 R. H. Krieble, J. Am. Chem. Soc., 69, 2687 (1947); A. J.
 Barry, L. DePree, J. W. Gilkey, and D. E. Hook, J. Am. Chem. Soc., 69, 2916 (1947).
- 3) K. Nozaki, K. Oshima, and K. Utimoto, *Tetrahedron*, 45, 923 (1989).
- 4) K. Nozaki, Y. Ichinose, K. Wakamatsu, K. Oshima, and K. Utimoto, Bull. Chem. Soc. Jpn., 63, 2268 (1990).
- 5) C. Chatgilialoglu, D. Griller, and M. Lesage, *J. Org. Chem.*, **53**, 3641 (1988); C. Chatgilialoglu, A. Guarini, A. Guerrini, and G. Seconi, *J. Org. Chem.*, **57**, 2208 (1992); B. Giese, B. Kopping, and C. Chatgilialoglu, *Tetrahedron Lett.*, **30**, 681 (1989).
- 6) During a preparation of our manuscript, Kopping et al. have reported hydrosilylation of alkenes and alkynes with TTMSS: B. Kopping, C. Chatgilialoglu, M. Zehnder, and B. Giese, J. Org. Chem., 57, 3994 (1992).
- 7) M. Taniguchi, K. Nozaki, K. Miura, K. Oshima, and K. Utimoto, *Bull. Chem. Soc. Jpn.*, **65**, 349 (1992).
- 8) M. Journet and M. Malacria, J. Org. Chem., **57**, 3085 (1992).
- 9) K. Utimoto, M. Kitai, and H. Nozaki, *Tetrahedron Lett.*, 1975, 2825.
- 10) T. H. Chan, P. W. K. Lau, and W. Mychajlowskij, *Tetrahedron Lett.*, **1977**, 3317.
- 11) B. Giese, J. A. González-Gómez, S. Lachhein, and J. O. Metzger, *Angew. Chem.*, *Int. Ed. Engl.*, **26**, 479 (1987).
- 12) H. G. Kuvila, Acc. Chem. Res., 1, 229 (1968).
- 13) T. B. Lowinger and L. Weiler, *J. Org. Chem.*, **57**, 6099 (1992).
- 14) H. Hayami, M. Sato, S. Kanemoto, Y. Morizawa, K. Oshima, and H. Nozaki, *J. Am. Chem. Soc.*, **105**, 4491 (1983).
- 15) S. Irifune, T. Kibayashi, Y. Ishii, and M. Ogawa, Synthesis, 1988, 366.
- 16) G. Zweifel and W. Lewis, *J. Org. Chem.*, **43**, 2739 (1978).
- 17) Y. Ichinose, S.-I. Matsunaga, K. Fugami, K. Oshima, and K. Utimoto, *Tetrahedron Lett.*, **30**, 3155 (1989).